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1. INTRODUCTION

If s > 0, 1 <p < 00 and 1 ~ q ~ 00, then there exists a large number of
equivalent characterizations of the (nowadays classical) Besov (or Lipschitz)
spaces B~,q, defined on the Euclidean n-space R n • One can take one of these
characterizations as a definition; e.g., B~,q (under the above restrictions for s,
p and q) is the collection of all complex-valued functions f(x) E L p (the
usual Lp-spaces on R n ) such that

is finite. We use standard notation: IlflLpl1 is the norm in Lp, and

(1)

(A ~f)(x) = f(x +h) - f(x), k= 2, 3,..., (2)

are the usual differences. In (1), I must be large enough, i.e., I > s. If q = 00

then one has to modify (1) in the usual way. (We remind the reader that one
can replace some differences in (1) by derivatives.) Under the above
restrictions for s, p, q and lone can take (1) as a norm in B~,q. Other
equivalent norms in B~,q can be obtained with the help of the
Gaul3-Weierstral3 semi-group (temperatures) or the Cauchy-Poisson semi
group (harmonic functions). If t > 0, then the Gaul3-Weierstral3 semi-group
is given by

[W(t)f](x) = (4nt) -n/2 f e -IX-YI'/4'l'(y) dy,
Rn
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(3 )
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and the Cauchy-Poisson semi-group by

(4 )

where en is an appropriate positive number and f(x) E Lp(R n). Again let
s > 0, 1 <p < 00 and 1~ q ~ 00. Then

with m > sl2 as well as

(6)

with m > s are equivalent norms in B;,q . (In both cases, m is an integer.
Furthermore, if q = 00, then (5) and (6) must be modified in the usual way.)
The restriction s > 0 can be removed as follows. If -00 < s < 00, 1 <P < 00,

1~ q ~ 00, and K > s12, then

is an equivalent norm in B;,q (modification if q = (0). We used standard
notations: F and F- 1 are the Fourier transform and its inverse, respectively,
in S' (the collection of all complex-valued tempered distributions on R n ). It
is easy to see that (7) is the generalization of (5) if one takes into
consideration that W(t)f satisfies the heat equation in the half-space
{(x, t)lx ERn' t > O} and that F(e- 11I212 )(x) = e-lxI212. In a similar way one
can extend (6) to BS,q with -00 < s < 00, 1 <P < 00, 1~ q ~ 00. (Then one
has to replace e-t,d~ in (7) bye-till.) The classical paper about this material
is [14] (cf. also [1, Chap. 4D. The above version can be found in [17,
pp. 190-196]. In recent years the spaces B;,q (always defined on R n) have
been extended to -00 < s < 00, 0 <p ~ 00 and 0 < q ~ 00. There are two
versions; nonhomogeneous spaces, which cover the above classical spaces,
and homogeneous spaces, which will be denoted in the sequ~l by Ji;,q.
Besides these spaces we consider a second scale F;.q (resp. F;,q), where
-00 <S < 00, 0 <p < 00 and 0 < q ~ 00. Special cases of that scale are the
classical Bessel-potential (or Lebesgue or Liouville) spaces, which contain
the Sobolev spaces, and the Hardy spaces. The aim of this paper is to find
characterizations of all these spaces in the spirit of (5)-(7). However, our
approach has nothing to do with semi-groups. Roughly speaking, we replace
t"(l + Ic;I 2

)" e- tlll2 in (7) by tp(tx) with t> 0 and x E R n and ask for
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conditions upon the function Ip(x) such that the counterpart of (7) yields an
equivalent n.orm (more precisely: quasi-norm) on B~.q. A similar question is
asked for F~.q (and also for the non-homogeneous counterparts B~.q and
F~.q). But mostly we shall be concerned with the homogeneous spaces.

The paper is organized as follows. Section 2 contains the necessary
definitions and also some remarks about the above-mentioned special spaces.
The results are formulated in Section 3: Theorem 1 and Theorem 2 in 3.1
(homogeneous spaces), Theorem 3 in 3.2 (non-homogeneous spaces), and a
discussion of the above special cases (GauJ3-WeierstraJ3 semi-group and
Cauchy-Poisson semi-group) in 3.3. Proofs of the theorems are given in
Section 4. As usual, c and c' denote general positive constants, which may
differ from line to line.

2. DEFINITIONS

2.1. The Homogeneous Spaces

Let R n be the n-dimensional real Euclidean space. Let S be the Schwartz
space of all complex-valued infinitely differentiable rapidly decreasing
functions on R n' and let S' be the collection of all tempered distributions on
R n (the dual of S). Let p(x) E S be a non-negative function with

and

suppp C {YI! < lyl < 2} (8)

00

'\ p(2 -jx) = 1
j= -00

(9)

(there exist functions p with the required properties). F denotes the Fourier
transform on S' and F- I the inverse Fourier transform. If -00 < s < 00,

o<p ~ 00 and 0 < q ~ 00 then

We recall that

(10)

( )

lip

IlhlLpl1 = L
n

Ih(x)IP dx if 0 <p < 00
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IlhlLwl1 = ess sup If(x)l.
XER n

Further, F- 1p(2 -j .) Ff means that F- 1 is applied to p(2 -jx) Ff If q = 00,

then one has to replace (L:~-w aJ)llq in (10) by supjaj . If -00 < s < 00,

o<P < 00 and 0 < q <. 00, then

F~.q = klfE S', IlfIF~,qll

= II (=~w 2
jSq

I(F- 1p(2 -j .) Ff)(. )Iq ) Ilq IL p II < 00 l (11)

(with the above modification if q = 00). The spaces B~.q and ~~.q should be
considered modulo polynomials. If P(x) is a polynomial in R n , then

(and similarly for F~.q). But we do not stress that point any more, because it
is not of interest for our purpose in this paper. A more detailed discussion of
this somewhat delicate question has been given in [21,5.1] (cf. also [19,
Chap. 3D.

2.2. The Non-Homogeneous Spaces

Let p(x) be the function from 2.1, and let

w

Po(x) = 1 - ~ p(2 -jx)
j~l

If -00 < s < 00, 0 <p <. 00 and 0 <q <. 00, then

(12)

(usual modification if q = 00). If -00 < s < 00, 0 <P < 00 and 0 <q <. 00,

then

F~.q = jIlfE S', IlfIF~.qll = IIF-1poFfILpll

+ II (~ 2
jSq

I(F- 1p(2-
j

.)Ff)(·)lq r1qlLp" < 00 l (13)

(usual modification if q = 00).
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2.3. Remarks and Special Spaces

The spaces from 2.1 and 2.2 have been studied extensively in [9,19,21].
The definition of the spaces B~,q and B~,q in the above manner goes back to
J. Peetre [6,7]. The spaces F~,q with p > 1 and q > 1 have been introduced
in [16]; the extension to 0 <p < 00 and 0 < q < 00 is again due to Peetre
[8]. (Similar spaces restricted to p > 1 and q> 1 have also been introduced
by P. I. Lizorkin [4,5].) We do not describe properties of these spaces, but
we mention that the spaces from (10)-(13) are independent of the function
p(x): Different p's yield equivalent quasi-norms. We describe some special
cases:

(i) If s > 0, 1 <p < 00 and 1 <q <00 then the spaces from (12)
coincide with the classical Besov spaces from the Introduction.

(ii) If s > 0 then Bs.x,.co = 'ifs are the classical H6lder-Zygmund
spaces.

(iii) If -00 < s < 00 and 1 <p < 00, then F~,2 = H~ are the usual
Bessel-potential spaces; in particular, if 1 <P < 00 and m = 0, 1,2,... , then
F;,2 = W; are the usual Sobolev spaces.

(iv) If 0 <P < 00 then F~,2 = Hp are the Hardy spaces in the sense of
C. Fefferman and E. M. Stein [3].

Proofs of these assertions and more detailed references may be found in
[19,21 j.

As has been said, the aim of this paper is to describe characterizations of
the spaces under consideration in the spirit of (5)-(7). For the classical
Besov spaces B~.q with s > 0, 1 <p < 00 and 1 <q <00, this has been ~one

by M. H. Taibleson [14]. The extension of these results to B~.q (and B~.q)

with p < 1 faces some difficulties, In particular, the semi-group approach has
no immediate counterpart. Characterizations of B~.q and B~.q with p < 1 in
the sense of (6) have been obtained by Peetre [9, p. 256] (0 <p < 1, m = 1,
s < I) and in the sense of (5) by Bui Huy Qui [10].

3. RESULTS

3.1. The Homogeneous Spaces

Let fE S' and let cp(x) E S. If t> 0 then we introduce the maximal
function

(cp(t· )f)* (x) = sup(1 + It-1YIQ)-1 I(F-1cp(t .)Ff)(x - Y)I (14)
yeR n

with a > 0 (later on we choose a big enough). This makes sense at least if
cp(x) has a compact support (and if 00 is an admissible value for the left-
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hand side of (14». In the theorems below we use this maximal function for a
bigger class of admissible functions <p (and under some restrictions for I).
One can always understand the corresponding expressions as a result of a
limiting process, where one starts with smooth <p's with compact support in
R n (or even in R n - {O}). In that sense the maximal function from (14) and
also F- 1<p(t .) Ff make sense for all involved <p's and f's. But we shall not
stress this point in the sequel.

THEOREM 1. Let L be a natural number and let <p(x) be a non-negative
infinitely differentiable function in R n - {O} such that

sup (lxlL + Ixl-L
) ID"<p(x)1 < 00

XERn-IO)
if lal~L (15)

and <p(x) > 0 if ~ < Ix I < 4.

(i) Let -00 < s < 00, 0 <p ~ 00 and 0 <q ~ 00. If a> nip in (14)
and if L in (15) is big enough then

(16)

and

(17)

are equivalent quasi-norms in Ji~.q (modification if q = 00 ).

(ii) Let -00 < s < 00,0 <p < 00 and 0 <q ~ 00. If a> nlmin(p, q)
in (14) and if L in (15) is big enough then

(18)

and

are equivalent quasi-norms in f~.q (modification if q = 00 ).

Remark 1. "L big enough" means

L ~ lsi + 6nlp + n + 4

(19)

(20)
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L ~ lsi + 6n/min(p, q) + n +4
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(21 )

in part (ii) of the theorem, provided that one chooses a in (14) near to n/p
and n/min(p, q), respectively. However, the numbers on the right-hand side
of (20) and (21) are somewhat artificial. The search for best numbers seems
to be a hard task, at least for the spaces F~.q. On the other hand, one can
find rather natural conditions for rp(x) under which (16) is an equivalent
quasi-norm in Ji~.q.

THEOREM 2. Let rp(x) be a non-negative infinitely differentiable function
on Rn- {O} such that rp(x) >0 if~ <Ixl < 4. Let -ro < s < ro, 0 <p<" ro
and 0 < q <" ro. Let

ap = n/2

ap= n(l/p -1)
if l<"p<"ro

if O<p<,,1
and up = ap- n/2. (22)

Let B be the unit ball in Rn and let So +up < s < St. If

Ixl- sl rp(x) E H~(B) with A> ap'

and

(23)

sup Ixl'''''ID'''(lxl-sorp(x))1 < ro
Ixl>!

(24)

then (16) is an equivalent quasi-norm in Ji~.q.

Remark 2. We recall that H~ = H~(Rn) is the usual Bessel-potential
space on R n and that H~(B) is the restriction of H~ to the unit ball B. If
A> 0 is an integer then H~ and H~(B) are the usual Sobolev spaces on R n

and on B, respectively. Furthermore, lap] is the biggest integer less than or
equal to ap' In particular, the theorem shows that the behavior of rp(x) near 0
and at infinity is quite different if p < 1. Conditions (23) and (24) are fairly
natural. One can reformulate (24) also in the language of the spaces H~.

3.2. The Non-Homogeneous Spaces

In order to find counterparts of Theorems 1 and 2 from 3.1 for the non
homogeneous spaces, it is desirable (but not absolutely necessary) to include
a term of the type IlflLpli. If 1 <"p <" ro this means that we must restrict s in
B~.q and F~.q by s> O. The case where 0 <p < 1, a bit more complicated
question, is discussed in [21, Remark 2.5.3/1]. It turns out thatfE L p makes
sense if fE B~.q or fE F~.q and s > n(l/p - I). However, for technical
reasons we sometimes need stronger restrictions.
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THEOREM 3. (i) Let 0 <p ~ 00, 0 <q ~ 00 and s > nip. Under the
same conditions for <p(x), L, and as in Theorem l(i),

(25)

and

(26)

are equivalent quasi-noms in B~.q (modification if q = 00 ).

(ii) Let 0 <p < 00, 0 <q ~ 00 and s >nlmin(p, q). Under the same
conditions for <p(x), L, and a as in Theorem l(ii),

(27)

and

IlflLpl1 + II (() t-Sql(~* .)J)* (·W ~t) IlqlL p II (28)

are equivalent quasi-norms in F~.q (modification if q = 00).

(iii) Let 0 <p ~ 00, 0 <q ~ 00 and s > max(O, n(llp - 1)). Under the
same conditions for <p(x) as in Theorem 2, formula (25) gives an equivalent
quasi-norm in B~.q'

3.3. Special Functions <p(x), Remarks

One can identify the function <p(x) from 3.1 with the function p(x) from
2.1 (after replacing 2 -I and 2 in (8) by 4 -I and 4, respectively). Then (16)
and (18) are essentially the continuous versions of IlfIB~.qll and IlfIF~.qll
from (10) and (11), respectively. More interesting are functions <p(x) which
have no compact support. If m is a sufficiently large number, then

(29)

satisfies the hypotheses of Theorem 1. On the other hand it is well known
that

(F-1<p(y't .) Ff)(x) = tm(_Ll)m (F- 1e- tIlI2FJ)(x)

= ctm [:t: W(t)f] (x), c =1= 0, (30)
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where W(t)f is the Gaul3-Weierstral3 semi-group (cf. (3) and [17,
p. 191/192]).

COROLLARY 1. (i) Let -00 < s < 00, 0 <p ~ 00 and 0 <q ~ 00. If m
is a non-negative integer with 2m > s then

(31 )

is an equivalent quasi-norm in Ii~.q (modification if q = 00).

(ii) Let -00 < s < 00,0 <p < 00 and 0 <q ~ 00. Ifm is a sufficiently
large natural number then

(32)

is an equivalent quasi-norm in F~.q (modification if q = 00).

Proof The proof is an easy consequence of (29) and (30) on the one
hand and Theorems l(ii) and 2 on the other hand (Sl = 2m in (23) in part
(i)).

Remark 3. This is a representation of Ii~.q and F~.q via temperatures.
Another interesting example of an admissible function qJ(x) is given by

(33 )

If m is a sufficiently large natural number, then the hypotheses of Theorem 1
are satisfied. If t >0 then we have

(F-1qJ(t .) Ff)(x) = tm(F-l Ic;l m e-t1tIFf)(x)

= (_t)m am (F-le-tltIFf)(x)
atm

= ct
m

[:t: P(t)f J(x), (34 )

where P(t)fis the Cauchy-Poisson semi-group (cf. (4) and c*O). The last
formula in (34) may be found in [17, p. 195].

COROLLARY 2. (i) Let -00 <s < 00, 0 <p ~ 00 and 0 <q ~ 00. If m
is a nonnegative integer with

m > s

m>s+n(l/p-l)

if 1~p~ 00,

if 0 <p < 1, (35)
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(36)

is an equivalent quasi-norm in B~.q (modification if q = (0).

(ii) Let -00 <s < 00,0 <p < 00 and 0 <q ~ 00. 11m is a sufficiently
large natural number then

(37)

is an equivalent quasi-norm in F~,q (modification if q = 00 ).

Proof Part (ii) is again an immediate consequence of Theorem I(ii),
(33) and (34). The proof of part (i) is a bit more complicated than the proof
of Corollary I(i), because q>(x) from (33) is not smooth at the origin (in
contrast to the function from (29)). If q>(x) is given by (33) and (35), then
we have to prove that (23) is satisfied. Let s I > s. Then it follows that near
the origin

If A. is a non-negative integer then we have

(38)

if m > A. - nl2 +Sl' (39)

By complex interpolation it follows that (39) is true for all A. ~ O. Because
A. > (Jp' this coincides with (35).

Remark 4. In contrast to 2m > s in Corollary I(i), the number m in (35)
depends on p if p < 1. One can improve (35) slightly, but not essentially. If,
e.g., s < 0 and Sl = m = 0, then Dae- 1xl :::::6"(lxl- ,al + l

) if lal ~ I near the
origin. By the above interpolation argument we have e -ixi E H~(R n) if
-A. + I > -nI2, i.e., A. < nl2 + 1. In other words, A. > (Jp from (23) can be
satisfied if either 00 ~ p ~ I or 0 <p ~ I and nip < n + 1. This shows that
(36), with s <0, 0 < q ~ 00 and m = 0, is an equivalent quasi-norm in B~.q if
00 ~p > nl(n + I).

Remark 5. One can try to study other special functions q>(x) in the sense
of Theorems 1-3. Let

(40)

where xh is the scalar product of x ERn and hER n' If one chooses m and
M in an appropriate way, then (15) with a given L is satisfied (but not the
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other assumptions for q>(x». What makes (40) (and modifications of (40»
interesting is the fact that

where A';{ are the usual differences in R n • One can follow that path, but not
as an immediate application of the above theorems. However, it is possible
to obtain characterizations of the spaces Ji;.q and i;,q via derivatives and
differences in that way. For details we refer to [21, 2.5.9-2.5.12].

Remark 6. We recall that Hp = i~,2 if 0 <p < 00, where Hp are the n
dimensional Hardy spaces. Now one can compare the above characterization
of H p via (18) and the characterization given by Fefferman and Stein in [3].
Let q>(x) be a function which satisfies the hypotheses of Theorem l(ii) (with
s = 0 and q = 2) and let ",(x) E S with ",(0) = 1, then

(41 )

and

(42)

are equivalently quasi-norms for H p with 0 <p < 00. Here, (42) comes from
[3] and (41) is the specialization of (18).

Remark 7. Finally we mention an application of the two corollaries.
Recently F. Ricci and M. H. Taibleson obtained in [11] representation
theorems for harmonic functions in R i = {(x, t) Ix E R 1 , t > O} via atoms
and molecules (cf. also [12, 15]). This approach has been extended to
temperatures in R i by S. E. Sands (cf. [13 D. On the basis of the above
corollaries one obtains corresponding representations by atoms and
molecules for the spaces Ji;.q' This possibility has been pointed out explicitly
in [13] (and it was the starting point for the present paper).

Finally we formulate the non-homogeneous counterparts of Corollaries
and 2.

COROLLARY 3. (i) Let 0 <p ~ 00, 0 < q ~ 00 and s > max(O,
n(l/p - 1». If m and k are natural numbers with 2m > sand

64o/35/n

k>s

k >s + n(l/p - 1)

if I ~p ~ 00,

if 0 <p < 1,
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are equivalent quasi-norms in B~,q (modification if q = 00).

(ii) Let 0 <p < 00, 0 <q ~ 00 and s > n/min(p, q), If m is a
sufficiently large natural number then

IIIIL,II + Ii(f,oo /.o-,m, ' aO=~t)1 (-) j' ~t) "'IL, II (45)

and

are equivalent quasi-norms in F~,q (modification if q = 00 ).

Proof The proof is the same as the proofs of Corollaries 1 and 2 if one
uses Theorem 3 instead of Theorems 1 and 2.

Remark 8. If 1 <p < 00 and 1~ q ~ 00 then (43) and (44) coincide
with (5) and (6), respectively.

4. PROOFS

4.1. Proof of Theorem 1

We prove part (ii). The proof of part (i) is the same, but some details are
simpler (cf. also Step 3).

Step 1. We recall that we always assume that q1(x) is sufficiently
smooth. Then we have, under the hypotheses of Theorem 1(ii), the maximal
inequality

where c is independent ofIE i~,q. A proof of the non-homogeneous version
of this estimate may be found in [21, 2.3.6] (cf. also [19, p. 29 D. There is no
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difficulty in extending this estimate to the above homogeneous version.
However, it is easy to see that the quasi-norm in (19) can be estimated from
above by the left-hand side of (47) and hence by c Ilfli~.qll. Because

I(P-1ep(t .) Pf)(x)1 ~ (ep(t . )f)* (x), (48)

it follows that the quasi-norms in (18) and (19) can be estimated from above
by c Ilfli~.qll.

Step 2. We prove that Ilfli~,qll can be estimated from above by the
quasi-norm in (18). Afterwards it follows from (48) and Step 1 that (18) and
(19) are equivalent quasi-norms in i~,q. Let p(x) be the function from 2.1
and let 1~ A~ 2. Then we have

(P- 1p(2 -j .) Pf)(x)

= (p- I p(2 -~ .) ep(2 -jA .) Pf)(x)
ep(2 JA ·)

I ( p(l - j .) ) .
= R

n

p- I ep(2-jA .) (y)(P- 1ep(2-JA ·)Pf)(x- y)dy. (49)

Under the assumptions for the supports of p and ep, the first factor in the
integral in (49) is a smooth function, which can be calculated by
(F-I(p/ep(A .)))(2jy)2jn and estimated from above by c2 jn (1 + 12jyl)-b,
where b >0 is at our disposal. Let 0 < r <min(p, q, 1). Then we obtain,
with the help of (14), that

I(P- 1p(2 -j .) Pf)(x)1

~ c(ep(2 -jA . )f)* I-r (x)

(1 + 12 j la)l-r
XI2 jn y. I(P- 1ep(2- jA,)Pf)(x-y)lr dy (50)

R n (1 + 12JYI)b .

In the first factor on the right-hand side of (50) we take the supremum with
respect to A, where 1~ A~ 2. Afterwards we integrate the modified
inequality with respect to A (which appears now only in the integral).
Because r <q we have

2

{ 1(F-lep(2 -jA .) Pf)(x - y)l r dA

2 r/q

~ ({ I(P- 1ep(2 -jA ,) Pf)(x - y)l q dA) .

Finally we replace the integration over R n in (50) by integrations over B _j =
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{ y II y I~ 2 - j} and {y I2 - j+ I ~ Iy I~ 2- j + I + I} with I = 0, 1, 2,.... Then we
have

I(F- 1p(2 -j .) Ff)(x)1

~ C sup «({J(2 -jl1 . f)* l-r(x)
1(;,,(;2

(51 )

where d> 0 is at our disposal (a and r in (50) are fixed). Let Mh be the
Hardy-Littlewood maximal function of a given function h. If we choose
d > n then every term of L~ 0 00. in (51) can be estimated from above by

Consequently,

(52)

We multiply both sides with 2sj and apply the lq-quasi-norm. By Holder's
inequality, based on 1/q = (1 - r)/q - rlq, and obvious abbreviations it
follows that

112 jS(F- 1p(2- j .)Ff)(x)llqll

~c112jS 1~~~2«({J(2-jl1.)f)*(x)\lqlll-rI12 jsrM(oo.y/q (x)llq/rll. (53)

We take the Lp-quasi-norm with respect to x. Again by Holder's inequality,
based on lip = (1 - r)/p + rip, we obtain that

112 js (F-Ip(2- j . ) Ff)(x) Ilql Lpll

~cl12js sup «({J(2-jl1.)f)* (')llqILplll-r
1(;,,(;2

(54)

The left-hand side of (54) coincides with IlfIF~.q II. The first f~ctor on the
right-hand side of (54) can be estimated from above by C IlfIF~,q\ll-r (cf.
(47)). We assume that q < 00. Then 00 > qlr > 1 and 00 > pjr > 1. This
shows that we can apply the vector-valued Hardy-Littlewood maximal
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inequality due to Fefferman and Stein [2] to the second factor on the right
hand side of (54). Then this factor can be estimated from above by

C 112Jsr (... y/q (. ) Ilq/r ILp/r 1/

= c II (~~oo f 12JS (F-
1
qJ(2 -}l .) FJ)(. )Iq dl f/q /L p/r "

~ c' II (fl It-S(F-lqJ(t .) FJ)(· )I q ~t) r/q ILp/r 11

=c' II(fooo
rSql(F-lqJ(t')Ff)(')lq~tf/qILpr (55)

If we put together these estimates then it follows from (54) that Ilfli~.qll can
be estimated from above by the quasi-norm in (18). This completes the proof
provided that q < 00.

Step 3. If q = 00 then the second factor in (54) must be replaced by

Because 00 >plr > I, we can apply the scalar version of the Hardy
Littlewood maximal inequality, which yields the desired result. The proof is
complete. In the case of the spaces B~.q, the scalar version of the Hardy
Littlewood maximal inequality is sufficient. But this inequality is also valid if
p = 00. This makes clear that p = 00 is an admissible value in part (i) of
Theorem 1.

4.2. Proof of Theorem 2

Step 1. We prove that there exists a constant c such that (under the
hypotheses of Theorem 2)

(56)

holds for every fE B~.q. The function p(x) always has the meaning of 2.1, in
particular,

00

f= 2.: F- 1p(2- j .)Ff
j~ -00

(57)

(we always assume, without restriction of generality, that Ff vanishes near
the origin). The left-hand side of (56) can be estimated from above by
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Let 2 -/ ~ t ~ 2 -/+ I. We put (57) in (58) and split L.1= -00 in the lth term, in
L.)= -00 and L.1=I+ I' First we deal with the terms withj ~ l. Let hex) E S be
a function with hex) = 1 if Ixl ~ 2 and hex) = 0 if Ixl ~ 4. If 51 has the
meaning of the theorem, Le., 51 > 5, then p(x) = Ixi sl p(x) has essentially the
same properties as p(x) (in particular, (10) with p instead of p is a charac
terization of B~.q in the sense of equivalent quasi-norms). Let 1~p ~ 00.

Then we have

2
1s

II F- 1cp(t.) j=~oo p(2-
j

.)FfI L p II

~C21(S-SI) !IF-lt- SI Ixl- sl cp(t .)h(t.)

X j=~oo 2
jsl

p(2-
j

.)FJlLp II
I

~c ~ 2Is+sIlj-/)IIF-lltxl-slcp(t.)h(t·)ILIII
j= -00

(59)

The Lcfactor in (59) is independent of t and we obtain

IIF- I Itxl- s, cp(t .) h(t . )ILIII = IIF- 1 Ixl- sl cph ILIII

~ c Illxl- sl cphlH~11 (60)

with A. > n/2 (cf. [21, (1.5.2/8)] or [18, lemma on p.60]). By the
assumptions for cp(x) the right-hand side of (60) is finite. Then (59) yields

21s "F-1cp(t .) j=~oo p(2 -j .) Ffl L p II

o
<c ~ 2k (S'-S) 2(/+k)S IIF- lp(2- k - 1o)FfILpll. (61)

k= -00

We raise (61) to the power q term by term. This can be done if one replaces
S I - 5 by a number 1J with S I - S > 1J > O. Then we integrate over t, where
2-I <t ~ 2 -I + I and multiply with 21

. Afterwards we take the sum over I and
obtain that

(=~oo 21sq s:~[+' \\F-Icp(t.) j=~oo p(2-
j

.)FfI L prdt2 /) I/q

<C IlflB p~q II. (62)
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Let 0 <p < 1. Then (59) must be replaced by

I
& c " 21sP+sIU-/lp 2In(l!P-I)P
"'" -'-'

j= -00
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We used that

(64)

(67)

if gl E Sf, g2 E Sf, SUpp Fg 1 and supp Fg2 are contained in {y II yl ~ b} (cf.
[21, (1.5.3/3)] or [18, p.57]) (c is independent of b). Instead of (60) we
have

2In(l!P-llP IIF-1Itxl- SI qJ(t ·)h(t ·)ILpIiP

= 2In((I!p-l)pt-nPtn IIF-1Ixl- SI qJhlLpllP ~ C Illxl- sl qJhlH~IIP (65)

with A. > Gp (cf. [21, (1.5.2/8)] or [18, lemma on p. 60]). If we put (65) in
(63) we then obtain the counterpart of (61). The rest is the same as for
p ~ 1. Consequently, we have (62) for all 0 <p ~ 00 and 0 <q ~ 00 (and
-00 <S < (0). Now we deal with the terms withj > I. We modify the above
function h(x) by h(x) E S with h(x) = 1 if ~ ~ Ixl ~ 2 and h(x) = 0 if either
Ix I~ 4 or Ix I~ ~. Let 0 <p < 1 (the necessary modifications if p ~ 1 are
clear now). Then (63) with 2-I~t~2-I+l, So instead of Sl and p(x) =
IxisO p(x) (resp. (59) in the case p ~ 1) must be modified by

2
1sp II F-1qJ(t .) j=~: 1 p(2 -j .) Ffl L p liP

00

& c " 2IsP+soU-I)p 2jn(l!P-l)P
"'" ......j=l+ 1

X IIF-1Itxl-sO qJ(t .) h(2 -j . )ILpIIP IIF- 1p(2 -j .) FflLpl1 p. (66)

(65) must be replaced by

2jn(I!P-llP IIF- 1Itxl- so qJ(t ·)h(2-j ')ILpIIP

~ IIF- 1 It 2jxl- so qJ(2 jt .) hlLpllP

~ c lilt 2 j xl- so qJ(2
j
t·) hlHill P

with A. > GP' We choose A. = 1 + [Gp]. Then it follows from (24) and the
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properties of h(x) that the right-hand side of (67) is finite and it can be
estimated by a constant which is independent of j (and I). We put (67) in
(66) and obtain that

21sp IIF-1qJ(t.) . f: p(2-
j

.)FfI L p liP
J=I+ I

00

~ c L 2(so-Slkp 2(1+klSP IIF- 1p(2 -k-I .) FfILpIIP. (68)
k=1

Now we argue in the same way as after (61) and obtain the counterpart of
(62) with I:~ I +I instead of I:J = _ 00' This counterpart and (62) itself prove
(56) (cf. (57)) (as has been mentioned, if p ~ 1 then the last calculations
must be modified in the above way).

Step 2. We prove that there exists a constant c such that (under the
hypotheses of Theorem 2)

IlfIB~.qll ~ c (fooo t- Sq IIF-1qJ(t. )FflLpll q ~t) I/q (69)

holds for every fE B~.q. Let 1~p ~ 00. Then (49) yields

IIF- 1p(2- j .)FfILpll ~cIIF-lqJ(2-jA .)FfILpll, (70)

where c is independent of j and A with 1 ~ A~ 2. Integration over A,
multiplication with 2js and summation over the qth power yield (69). Let
O<p< 1. Let 'I/(x)ES be a function with sUPP'l/c{yllyl~2K+I} and
'I/(x) = 1 if Ixl ~ 2\ where we choose the natural number K later on. Similar
to (49) we have

I(F- 1p(2 -I .) Ff)(x)1

~tn I (F-
1 :g~I~'\) (y)(F-

1
qJ(2- IA') '1/(2-

1
')Ff) (x-y)ldy. (71)

If x E R n is fixed then the Fourier transform of the y-function in the integral
in (71) has a support which is contained in a ball with the radius c 21

+K,

where c is independent of I and K. We can apply an inequality of
Plancherel-Polya-Nikol'skij type (cf. [21, 1.3.2] or [18, p. 29]) and obtain
that

I(F-lp(2-1.)Ff)(X)IP~c2(1+K1Pn(l/p-llf I(F- 1 P(2-/ .») (y) I
P

R n qJ(2 A')

X I(F- 1qJ(2 -IA .) '1/(2 -I .) Ff)(x - y)IP dy. (72)
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Integration over x yields
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IIF-lp(2-1.)FfILpIIP

~ C2Kn(l/p-l)p IIF- 1qJ(2 -IA. .) ",(2 -I .) FflLpil P

~ C 2Knp(l/P-l) IIF- 1qJ(2 -IA. .) FflLpilP

+ 2Knp(l/P-l) IIF- 1qJ(2-1A. ·)(1- ",(2- 1.»FfILpIIP. (73)

The term on the right-hand side is just what we want (cf. (70»: We multiply
with 2lsp, integrate over A. with respect to 1~ A. ~ 2 and take the sum over
the q/pth power with respect to I. That part which comes from the second
term in (73) can be estimated in the same way as in (68), where qJ(t .) is
replaced by qJ(t.)(I-",(2-1 .» with t=2-1A.. Then L~=l in (68) can be
replaced by L~=K' By assumption we have

(s - so)p >app = n(l/p - l)p. (74)

We take the lQ-quasi-norm. Then (73) yields (after the above calculations)

IlfIB~.QII ~ c ((0 t-SQ IIF-1qJ(t .)FfILpIIQ~t) I/Q

+ C 2Knp(l/P-l) 2-(s-so)PK IlfIB~.QII,

where c is independent of K. If we choose K big enough then we obtain the
desired estimate from (74). The proof is complete.

4.3. Proof of Theorem 3 (Outline)

Step 1. We prove part (ii), the proof of part (i) is the same. LetfE F~,Q

and let Po(x) be the function from 2.2. Then we have

We can apply (19) with F- 1(I-po)Ffinstead off (similarly one can deal
with (18) instead of (19». Then we have

IlfIF~,QII"" IIF-lpoFflLpll

+ II ((J t- sQ l(qJ(t .) F- 1(1 - Po) Ff)* (. )IQ ~t) l/Q IL p II. (76)

The crucial point of the proof is the following estimate,

II (() t- sQ l(qJ(t .)F-lpoFf)* OIQ ~t) I/Q'L p II

~ c IIF-lpoFfi L pII, (77)
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where c is independent off Let us take it for granted that (77) is valid. Then
(76) yields

IIfIP~.qll "'" IIp-1poPflLpll

+ II(() t- Sq l(qJ(t . )f)* (. )I q ~t r;q IL p II· (78)

In [21, (2.5.9/37)] or [20, p. 1109] we proved that

IIp-1pOPflLpll ~ ctllflLpl1 + e IlfIP~.qll, (79)

(82)

where e >0 is an arbitrary number [for this estimate one needs that
s >max(O, n(I/p - 1»]. However, (78) and (79) prove that (28) is an
equivalent quasi-norm in p~.q. We must prove (77). Let g = p-1poPf Then
we have

(qJ(t .) g)* (x) = sup(I +IylQ) -I I(P-1qJ(t .) Pg)(x - ty)1 (80)
YER n

(cf. (14». By standard calculation it follows that

(P-1qJ(t .)Pg)(x-ty) = f (F-lqJ)(z)g(x-ty-tz)dz. (81)
Rn

Let

g*(x) = sup Ig(x - u)1
UER n 1 + lulQ

be the maximal function of the entire analytic function g. If t > 1, then (81)
yields

I(P-1qJ(t .) Pg)(x - ty)!

~ cta(1 + lylQ) f I(P-1qJ)(z)1 (1 + Izla)dz. g*(x). (83)
Rn

The assumptions for qJ ensure that the integral in (83) converges. Conse
quently,

(qJ(t .) g)* (x) ~ ctag*(x), t ~ 1. (84)

If 0 < t ~ 1, then we replace qJ(x) in (81) by Ixl L 'II(x), which is reasonable
(cf. (15». We have
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and we shift F- 1 lulL F in (81) from l{I to g. Elementary calculations yield

(F-lqJ(t .)Fg)(x-ty)

=tLf (F-1l{l)(z)(FluILF-1g)(x-ty-tz)dz. (85)
Rn

Our assumptions ensure that the integral in (83) with l{I instead of qJ
converges. Then the counterpart of (84) reads as

t ~ 1. (86)

We choose a and L such that s >a >njmin(p, q) and L > s. Then we have

II (() t- Sq l(qJ(t .) g)* (. )I q ~t) I/q IL p II

~cIIg*ILpll +cII(FluILF-1g)*ILpll. (87)

We recall that g E L p and supp Fg c {y IllYl ~ 2}. The theory of these L p
spaces of entire analytic functions has been developed in [21, Chap. 1] and
[18, Chap. 1]. In particular it follows that lulL is a Fourier multiplier in
these spaces and that the Lp-quasi-norms of the above maximal functions g*
and (FluILF-1g)* can be estimated from above by cllglLpll. Now (77)
follows from (87) and we are through.

Step 2. The proof of (i) is the same as in Step 1. We prove part (iii).
The counterpart of (76) is obvious. Instead of (77) we must prove that there
exists a constant c such that

(88)

with g = F-lpoFf and f E B~.q. If (88) is established, then the counterparts
of (78) and (79) yield the desired proof. Let 1~p ~ 00 and t ~ 1. Then we
use (81) with y = 0 and obtain

(89)

If 1~p~ 00 and t~ 1 then we use (85) with y=O and L =Sl > S (cf.
Theorem 2). We have

t ~ 1. (90)
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By the same arguments as above we obtain (88). Let 0 <p < 1 and t ~ 1.
Then (81) yields

I(F-'qJ(t .)Fg)(x)1

~ cg*(X)I-P taO-PI f I(F-'qJ)(z)1 (1 + Izla)'-P Ig(x - tz)IP dz, (91)
Rn

where a > nip is sufficient for the application of the maximal inequatility for
gELP (cf. [21, 1.4.1] or [18, p. 36D. In particular we can choose a in such
a way that s >a(1 - p) > n( lip - 1). We raise (91) to the power p, integrate
over x E R n and apply Holder's inequality with respect to p + (1 - p) = 1.
The result reads as

IIF-IqJ(t .) FglLpl1 ~ ctall - p) II g* ILpll'-P II glLpliP

~cftaO-p) IlglLpll, t~ I, (92)

which is the counterpart of (89). If 0 < t ~ 1 (and 0 <p < 1) then (86) with
L = s I yields (90). This shows that (88) holds also if 0 <p < 1. The proof is
complete.
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Note added in proof As far as characterizations of i;.q with I <p < 00 and I < q < 00

are concerned (cf. Corollary 2 (ii» we refer to 122, 23].
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